Extremal Functions in De Branges and Euclidean Spaces Ii
نویسنده
چکیده
This paper presents the Gaussian subordination framework to generate optimal one-sided approximations to multidimensional real-valued functions by functions of prescribed exponential type. Such extremal problems date back to the works of Beurling and Selberg and provide a variety of applications in analysis and analytic number theory. Here we majorize and minorize (on RN ) the Gaussian x 7→ e−πλ|x|2 , where λ > 0 is a free parameter, by functions with distributional Fourier transforms supported on Euclidean balls, optimizing weighted L1-errors. By integrating the parameter λ against suitable measures, we solve the analogous problem for a wide class of radial functions. Applications to inequalities and periodic analogues are discussed. The constructions presented here rely on the theory of de Branges spaces of entire functions and on new interpolations tools derived from the theory of Laplace transforms of Laguerre-Pólya functions.
منابع مشابه
Subspaces of De Branges Spaces with Prescribed Growth
The growth properties of de Branges spaces and their subspaces are studied. It is shown that, for each given pair of growth functions λ(r) = O(r) and λ1 = o(λ), there exist de Branges spaces of growth λ that have a de Branges subspace of growth λ1. This phenomenon cannot occur for a class of de Branges spaces that, in a certain sense, behave regularly along the real axis. §
متن کاملUniversality Limits for Random Matrices and de Branges Spaces of Entire Functions
We prove that de Branges spaces of entire functions describe universality limits in the bulk for random matrices, in the unitary case. In particular, under mild conditions on a measure with compact support, we show that each possible universality limit is the reproducing kernel of a de Branges space of entire functions that equals a classical Paley-Wiener space. We also show that any such repro...
متن کاملBoundary behavior of functions in the de Branges–Rovnyak spaces
Abstract. This paper deals with the boundary behavior of functions in the de Branges– Rovnyak spaces. First, we give a criterion for the existence of radial limits for the derivatives of functions in the de Branges–Rovnyak spaces. This criterion generalizes a result of Ahern-Clark. Then we prove that the continuity of all functions in a de Branges– Rovnyak space on an open arc I of the boundary...
متن کاملA Note on Some Positivity Conditions Related to Zeta and L-functions
The theory of Hilbert spaces of entire functions [1] was developed by Louis de Branges in the late 1950s and early 1960s with the help of his students including James Rovnyak and David Trutt. It is a generalization of the part of Fourier analysis involving Fourier transform and Plancherel formula. The de Branges-Rovnyak theory of square summable power series, which played an important role in l...
متن کاملMajorization in de Branges spaces II. Banach spaces generated by majorants
This is the second part in a series dealing with subspaces of de Branges spaces of entire function generated by majorization on subsets of the closed upper half-plane. In this part we investigate certain Banach spaces generated by admissible majorants. We study their interplay with the original de Branges space structure, and their geometry. In particular, we will show that, generically, they w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014